Real-Time Data Collection through ITS Architectures in Anchorage

Jeffrey Miller, Ph.D. University of Alaska, Anchorage

Presentation for Intelligent Transportation Society of Alaska Annual Membership Meeting October 7, 2010

Outline

- Discrete Traffic Assessment in Anchorage
- Distributed Traffic Assessment in Anchorage
- Current Results
- Future Projects

Discrete Traffic Assessment in Anchorage

Discrete Traffic Gathering in Anchorage

Discrete Traffic Gathering in Anchorage

Distributed Traffic Assessment in Anchorage

Distributed Data Gathering

- Instead of just gathering data at discrete locations, data can now be gathered from individual vehicles
- This can be accomplished through devices installed in vehicles or devices that are traveling with the vehicle
 - These devices can report speed, location, and possibly other vehicular parameters
- This allows real-time data to be gathered

Proposed Traffic Gathering in Anchorage

Architecture

Proposed Traffic Gathering in Anchorage

Vehicle-Tracking Devices

Proposed Traffic Gathering in Anchorage

Cellular Probes

Privacy Concerns

- The data which is transmitted has a unique identifier associated with it, but this identifier is not associated with a vehicle
- We are only interested in the main arterials and not residential streets
- The location of the device is not exposed to the public, but only a map showing an aggregation of the data

Current Results

Current Status

- Currently, we have 65 vehicles being tracked
 - Volunteers
 - VPSI Share-A-Ride vans
 - Delivery vehicles
- We are currently working on creating the smartphone application and have some promising preliminary results
- We have spoken with Yellow Cab and Checker Cab in Anchorage, and they are both willing to work with us, though we have not received any data from them yet
- We have spoken with the Municipality about retrieving data from the Peoplemover, but have not received any data from them yet

Current Results - FreeSim

Transferring data from khm1.google.com...

Current Results - FreeSim

Additional Information

- The data shown on <u>http://www.alaskatraffic.net</u> stays live for 30 minutes if no other vehicle drives along the roadway
 - We are trying to assess if that length of time still reports accurate data or if the data is stale in a period less than that
- The project is free and open-source, and it is being used by other universities around the world in conjunction with departments of transportation
- We have determined travel times along certain arterials (such as Tudor between Elmore and the Seward Highway), and can aggregate the data we have over periods of time
 - This has been requested by the Municipality of Anchorage for their speed study that goes into their annual report

Future Projects

Future Projects

- The applications of this data are too many to enumerate, but here are a few of the projects that are on our short-term list
 - Interfacing with the Municipality of Anchorage and the Alaska DOT to provide them with a summary of the data
 - Advertising <u>http://www.alaskatraffic.net</u> for the public to view when we, the MOA, and the DOT feel the information displayed is accurate enough for the public
 - Creating efficient and accurate algorithms for determining amount of time to traverse roadways based on data available
 - Retrieving GPS data from additional vehicles through devices already installed or through installing more devices
 - Tracking snow plows and showing on the map the roads that have already been plowed in real-time

Future Projects

- Aggregating all of the data we can in real-time to provide a single interface
- Working with freight, delivery, and taxi companies to determine how they can use this data and what data they can provide
- Determining fastest paths in real-time and notifying drivers of the fastest way to get to their desired destinations
- Solving academic problems with practical applications, such as the Dynamic Traveling Salesman Problem
- Determining how to reduce cost for the devices through V2V2I aggregation algorithms and WiFi or another form of wireless transmission
 - The US FCC has already standardized vehicular communication using DSRC with 75MHz allocated on the 5.9GHz band
 - The IEEE has standardized 802.11p for vehicular communication
- Other projects as determined by key stakeholders

Questions?

